
April 15, 2016

M.Inf.1809
Career-oriented Key Skills
in a research oriented PW

Reconstructing spiking neural
network connectivity in the

presence of irregular dynamics

Name: Dimitra Despoina Maoutsa

MN: 21364423

Supervisor: Prof. Dr. Florentin Wörgötter
Prof. Dr. Marc Timme





Research Project

Contents
1. Introduction 4

2. Theoretical Background 6
2.1. Model-independent reconstruction of neural network connectivity 6
2.2. From Singular Value Decomposition to Minor Component Analysis 9

2.2.1. Singular Value Decomposition . . . . . . . . . . . . . . . . 9
2.2.2. Minor Component Analysis . . . . . . . . . . . . . . . . . 10

3. Results 11
3.1. Studying the spread of events in the event spaces . . . . . . . . . 11
3.2. Inference of synaptic connectivity with Minor Component Analysis 13

4. Conclusion 18

A. References 20

References 20

B. Leaky Integrate and Fire neuron 22

1





Research Project

Abstract
Knowledge of neural network synaptic connectivity is essential for understanding
the underlying information processing in brain circuits. Although numerous con-
nectivity inference methods exist that rely solely on spike train data, most of them
effectively reveal only functional relationships between the activities of the neu-
rons instead of anatomical (structural) ones. Recently we proposed a method for
reconstruction of the synaptic (structural) connectivity of spiking neural networks
from observed multiple spike trains without knowledge of an underlying specific
model on how spikes are generated or how incoming signals are processed in a
neuron. There we proposed a novel representation of the spike train recordings in
high-dimensional spaces, termed event spaces. Although successful for networks
with regular firing patterns, the method delivered non-optimal predictions in the
presence of irregular spiking activity, especially for limited recording durations.
Here, we present a short modification of the previously proposed method that
effectively reveals the network synaptic connectivity unequivocally also for set-
tings with irregular activity. In particular, we propose the identification of the
directions in the event spaces that exhibit the smallest variance by employing a
Minor Component Analysis on the observed events. Subsequently by consider-
ing only those minimum variance directions in the linear system of equations we
may effortlessly identify the actual synaptic connectivity accurately. We demon-
strate our results on simulated networks with known connectivity under various
dynamical conditions and connectivity settings. The proposed modification may
serve as a complement to our previously presented method and may promote the
successful application of our reconstruction approach in experimental settings.
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1. Introduction
Understanding how the brain operates and processes external stimuli comprises
an overarching endevour that has engaged researchers for several decades. The
brain may be construed as a large network where the different brain areas serve
as nodes, while the inter-regional pathways connecting them may be considered
as links. In turn each brain area may be decomposed into smaller networks where
for these networks the individual neurons are considered nodes and the synapses
projecting between them are viewed as links of the network [1, 2].
Commonly, networks are studied theoretically by decomposing them into their

fundamental parts and interactions, and consequently investigating the behaviour
of each constituent independently, as if it was isolated. By doing so one intends
to identify the intrinsic dynamics of each constituent unit and define afterwards
mathematical models that capture its function. Subsequently, one re-assembles
all the parts together by coupling the individual models, formulating thereby a
larger mathematical model that is supposed to capture the function and the key
features of the network at hand [3]. Such approaches are commonly termed
forward or modelisation approaches [4] and in the field of neuroscience have
contributed to the understanding of how different activity patterns (e.g. syn-
chronous/asynchronous or regular/irregular) emerge in networks of pulse coupled
neurons [5, 6], or even how established anatomical connections in brain networks
contribute to the manifestation of functional relationships [1].
However, such forward modeling of a network may be a rather complicated

pursuit due to the very complexity of its structure or due to the complexity
of the individual nodal dynamics [3]. For instance, the human brain comprises
approximately 1012 neurons tightly interconnected through numerous synapses
(approximately 104 for each neuron). These numbers render a forward approach
intractable. In those settings inverse approaches, where one initiates the analysis
from the observed measurements, may particularly help to gain insight on the
function of the network at hand. However, inverse problems are particularly
demanding; while in forward problems there is always a unique mapping from the
model parameters to the measurements, inverse approaches may yield instead of a
unique solution, a family of solutions that matches the observed measurements [4].
In particular the inference of neural network structure from multiple spike train

recordings constitutes a rather challenging inverse problem [7]. The fundamental
reason for the increased hardness of this problem may be attributed to the con-
strains that the current monitoring methods impose. In fact, with the current
recording methods one may simultaneously observe the activity of an ensemble
of neurons only extracellularly. That means that one may only observe when the
natural state variable of each neuron, the membrane voltage, crosses the voltage
threshold emitting thereby a spike. Therefore for the reconstruction of such net-
works one has to mitigate the limitation of partial access to the state variable of
each neuron.
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The existing methods that tackle the problem of the connectivity inference in
neural networks may be classified in two broad categories: the model dependent
approaches and the model independent ones. The methods that fall into the
former category rely mainly on assumptions on some underlying neuronal model
with either known [8] or unknown [9] physiological parameters and by employing
some optimisation procedure, infer the actual synaptic structure of the network.
On the other hand, the model independent frameworks employ mostly statisti-
cal [10] or information theoretic [11] measures to resolve the network structure.
However these approaches result in predictions of functional connections (i.e.
correlation in the activities of the neurons) instead structural ones.
In [12] we introduced a novel model-independent approach that, in contrast

to the existent model-independent frameworks, succeeds to identify structural
connections among the neurons. Although successful for networks with regular
firing patterns, the method delivered non-optimal predictions in the presence of
irregular spiking activity, especially for limited recording durations. Here, we
present a short modification of the previously proposed method that effectively
reveals the network synaptic connectivity unequivocally also for settings with
irregular activity.
This report is structured as follows: In the next section 2 we present briefly

the reconstruction method already introduced in [12], followed by a brief descrip-
tion of the mathematical tools we used to modify the reconstruction approach.
In the succeeding section 3 we describe how we may modify the reconstruction
framework to deliver accurate results also in the presence of irregular activity.
Subsequently we present the efficiency of our approach in different network set-
tings and finally in the last section 4 we offer a brief discussion.
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2. Theoretical Background

2.1. Model-independent reconstruction of neural network
connectivity

Let us assume that we have access to the extracellular recordings (multiple spike
trains) of a network comprising N neurons, but we have no prior information
regarding the established synaptic connections between the neurons and the un-
derlying neuronal dynamics they follow. Would we be able to infer the network
connectivity from the spike recordings alone under these conditions? Indeed in
[12] we presented a framework that may help reveal the network interactions
under these aforementioned conditions. We refer the reader to [12] for a de-
tailed presentation of the method, while here we present the main outline of the
approach.
Assuming a network of N neurons with unknown synaptic connections and

underlying dynamics, we have only access to the extracellularly recorded activity
of the neurons. Considering the reconstruction of the incoming connectivity of a
unit i, we may define the following quantities:

• The m-th inter-spike interval of neuron i, denoted by ∆T im ∈ R, is the du-
ration of time between two consecutive firings of neuron i, and in particular
between the m-th and (m+ 1)-th firing of i.

• The k-th cross-spike interval of neuron j with respect to the m− th inter-
spike interval of neuron i, denoted by wij,k,m ∈ R , is the duration between
the onset of them-th spike of neuron i and the k-th successive spike emitted
from neuron j that occurs within the m-th inter-spike interval of i.

Although we do not have any prior information regarding the dynamics of
neuron i, we may in general express the inter-spike intervals of neuron i as a
function hi that depends on the times that i receives its inputs from its pre-
synaptic neurons (i.e. the neurons that project direct synapses to i). To that end,
we may quantify the spike reception times with the cross-spike intervals of the pre-
synaptic neurons of i with respect to the emitted spikes from neuron i. However,
since the actual subset of the network that is directly connected to neuron i is
unknown, we may consider the cross-spike intervals of the entire network with
respect to i and define cross-spike intervals wij,k,m with j ∈ {1, 2, . . . , N} \ {i} for
every spike that was emitted during the inter-spike intervals of i [Fig. 1(left)].
Therefore the m-th inter-spike interval of neuron i, ∆T im, may be expressed as:

∆T im = hi(ΛiW i
m), (1)

where the underlying neuronal dynamics are captured by the unknown function
hi : RN×Ki → R and Λi denotes the explicit dependency matrix of i (c.f [13]), a
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Figure 1: With the event space representation the network activity (left)
may be mapped onto discrete points in the event space (right). The
events eim constitute samplings of the (unknown) function hi and are therefore
expected to arise as a (possibly) non-linear manifold in the event space.

diagonal matrix that reflects the incoming connectivity of neuron i. W i
m denotes

the matrix of cross-intervals with respect to i and is structured as:

W i
m =


wi1,1,m wi1,2,m · · · wi1,Ki,m

wi2,1,m wi2,2,m · · · wi2,Ki,m
... ... . . . ...

wiN,1,m wiN,2,m · · · wN,Ki,m

 . (2)

Considering that the (unknown) function hi maps the inputs of neuron i from the
entire network to the observed durations of the inter-spike intervals of i, we may
define a mapping that actually captures this relationship. Therefore, we may
define an event as the concatenation of the cross-intervals of the entire network
with respect to i with the associated inter-spike interval of neuron i, i.e.:

eim := [vec
(
W i
m

)
, ∆T im]> ∈ R(N Ki+1), (3)

where the operator vec : RS×R → RS R denotes the vectorization of a matrix
[14], and subsequently define the event space as the space that is spanned from
these events [Fig. 1].
Considering now that hi is in general unknown, we may locally approximate this

(probably) complicated function with a linear one that would be much simpler
to handle. For that reason, we may select a reference event eir in the event space,
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that is closest to all other generated events

eir := min
ei

s

∑
m

‖eim − eis‖2
2 (4)

where r, s ∈ {1, 2, ...,M}, and approximate the function hi locally around eir as:

∆T im = ∆T ir + tr

( ∂hi
∂W i

)>
Λi
[
W i
m −W i

r

] , (5)

where tr(·) denotes the trace operator [14] and
(
∂hi

∂W i

)
∈ RN×Ki stands for the

matrix derivative
(
∂hi

∂W i

)
=
(
∂hi

∂W i

)
(ΛiW i

r).

Subsequently after some matrix operations described explicitly in [12] yield :

∆T im = ∆T ir +
Ki∑
k=1

∇hi,kΛ
i
[
wi
k,m −wi

k,r

]
. (6)

By rewriting Eq. ( 6) in a matrix form we may obtain:

∆T im = ∆T ir + giΓ
iyim, (7)

where gi :=
[
∇hi,1,∇hi,2, · · · ,∇hi,Ki

]
∈ RNKi contains the gradients of hi,

Γ i ∈ RN Ki×N Ki denotes a block diagonal matrix with Λi on the main diagonal
and zeros elsewhere:

Γ i :=


Λi 0N×N · · · 0N×N

0N×N Λi · · · 0N×N
... ... . . . ...

0N×N 0N×N · · · Λi


and yim :=

[
wi

1,m −wi
1,r,w

i
2,m −wi

2,r, · · · ,wi
Ki,m −wi

Ki,r

]>
∈ RN Ki .

Subsequently, by defining a particular distance metric, i.e. the Euclidean dis-
tance, we may select the M closest events (with respect to the defined distance
metric) to the reference event eir and construct a linear system of equations for
those selected events

di = giΓ
iY i, (8)

with the vector di := [∆T i1 −∆T ir , ∆T i2 −∆T ir , · · · , ∆T iM −∆T ir ] ∈ RM denoting
the inter-spike interval differences between the selected and the reference event,
and Y i := [yi1,yi2, . . . ,yiM ] ∈ RN Ki×M containing the related cross-spike interval
matrices.
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The least squares solution of (Eq. 8) may be obtained by:

giΓ
i = diY i†, (9)

where Y i† denotes the Moore-Penrose pseudo-inverse of Y i , namely Y i† := Y i>
(
Y iY i>

)−1
.

Finally, to assess the strength of the synaptic couplings we defined the connec-
tivity characterisers ai ∈ RN as:

ai = IKigiΓ i, (10)

where IKi denotes the matrix consisting of Ki replicas of the N × N identity
matrix

IKi = [1N×N ,1N×N , · · · ,1N×N ] ∈ RN×N Ki

.

2.2. From Singular Value Decomposition to Minor
Component Analysis

2.2.1. Singular Value Decomposition

The Singular Value Decomposition (SVD) of a matrix A ∈ Rn×d consists a frame-
work that factorises the matrix A into the product

A = UΣV >, (11)

where the matrices U ∈ Rn×n and V ∈ Rd×d are orthonormal bases with U>U =
In×n and V >V = Id×d, while the matrix Σ ∈ Rn×d is a diagonal matrix, with the
diagonal entries σi arranged with decreasing order of magnitude being commonly
referred to as singular values. The vectors forming the columns of U and V are
usually termed left and right singular vectors.
Assuming that the entries of A represent n points in a d-dimensional space,

then the SVD yields an orthonormal basis composed by the column vectors of V
(the right singular vectors), V = [v1v2 . . .vd], that solves the problem of best least
squares fit, i.e. the singular vectors are aligned in such way in the d-dimensional
space that the distances of the points to the basis vectors are minimised [15].
Computing the SVD of matrix A equals to performing an eigenvalue decompo-

sition for the positive semi-definite matrices AA> and A>A, with the eigenvectors
of A>A being the right singular vectors (columns of V ) and the eigenvectors of
AA> the left singular vectors (the columns of U). The eigenvalues of both ma-
trices AA> and A>A are the same and are equal to the square of the singular
values contained in Σ.
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2.2.2. Minor Component Analysis

The counterpart of the widely applied statistical method Principal Component
Analysis [16] is the mostly unknown method Minor Component Analysis(MCA).
Here one intends to identify the directions in the sample data space that exhibit
the lowest variance. These directions essentially correspond to the eigenvectors
that are associated to the smallest eigenvalues of the covariance matrix of the
data matrix A.
One may employ SVD to perform MCA. Essentially the covariance matrix C

of the data described by the matrix A (if we assume that A is centered (i.e. has
zero column means)) can be diagonalised as:

C = V LV > (12)

where V contains in its columns the eigenvectors of C, while the matrix L is
diagonal matrix containing the eigenvalues λi of C in decreasing order. The
eigenvectors (columns of V) are commonly termed principal axes or directions.
Returning to singular value decomposition of A (Eq. 11) we may rewrite C as:

C = 1
n− 1V ΣU

>UΣV > = V
Σ2

n− 1V
>. (13)

By comparing Eq. 12 with Eq. 13 we may identify that the right singular vectors
are essentially the principal axes (the eigenvectors of the covariance matrix) and
that the eigenvalues of the covariance matrix are related to the singular values
via the relationship:

λi = σ2
i

n− 1 . (14)

With that we have a direct relationship between the SVD and the principal
components of the dataset represented by A. Subsequently if we want to identify
the directions in the data space that exhibit the least variance, we may just
identify the left singular vectors that are associated with the singular values of
the smallest (non-zero) magnitude.
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3. Results

3.1. Studying the spread of events in the event spaces
In [12] we presented and discussed the limitation of the proposed reconstruc-
tion method to reveal unequivocally weak synaptic connections in the presence
of irregular dynamics (Coefficient of Variation CV > 0.5) for networks compris-
ing both excitatory and inhibitory synapses. Although the (stronger) inhibitory
synapses may be effortlessly recovered in the presence of irregular dynamics, the
connectivity characterisers of the (weaker) excitatory connections were hardly
separated from the characterisers of the absent synapses. However our method
may be not limited to deliver accurate results only in the regular dynamics regime.
Here, we present a small modification of our framework that results in accurate
predictions also for networks with more irregularly firing neurons and serves as a
complementary solution instead of a replacement of the previous approach.
As already discussed in [12] the variability of neural firing in networks exhibit-

ing irregular dynamics generates events that span a more extended volume in the
event space compared to networks that exhibit regular dynamics. For the recon-
struction of the connectivity of those networks we proposed the employment in
the linear system of equations (Eq. 8) only of those points that lay in the vicinity
of the reference event (Eq 4). The underlying rationale for this selection strategy
was that the linear approximation of the function hi (Eq. 6) will be valid only in
the proximity of the reference event, especially in the case of an underlying non
linear function.
The selection criterion that we employed was based on the Euclidean distance

of the events in the event space; the events that exhibited smaller Euclidean
distance to the reference event were included in the linear system Eq. 8. However
the high dimensionality of the event spaces may render the employment of the
Euclidean distance imprecise. In the literature it has been widely argued that
the problem of the selection of the nearest neighbors to a query point becomes
ill defined already for spaces of dimensionality as low as d = 15 [17, 18].
Moreover, for the determination of the nearest events to the reference point

we consider the distance of the events taking into account also the dimensions
that are associated with the cross-spike intervals from the un-connected (and
therefore non relevant) neurons to unit i, since we do not have prior knowledge
of the subset of the neurons that are actually connected to i. Therefore, events
that correspond to inter-spike intervals of i, during which i received identical
inputs from its pre-synaptic neurons may be considered as distant because of
the influence of the cross-spike intervals arising from the un-connected neurons.
This caveat is particularly relevant for networks with irregular activity and sparse
connectivities, where the majority of the dimensions in the event space may be
construed as noise.
Subsequently, we observe the variance of the arising cross-spike intervals in
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a. b.

c. d.

Figure 2: Cross-spike intervals of un-connected neurons exhibit consis-
tently larger variance than cross-spike intervals of pre-synaptic neurons
as the synaptic strength Jex and the probability of connection increase.
Coefficients of variation of cross-spike intervals CVW arising from connected exci-
tatory (E), connected inhibitory (I) and unconnected (A) neurons calculated from
the first 2000 events monitored for each unit against (a.) connection strength
and probability of connection p = 0.1, and against (b.) probability of connection
in the network for Jex = 3.5. (c.,d.) Coefficient of variation of inter-spike in-
tervals CV∆T against connection strength and probability of connection. (Error
bars denote standard deviation)

networks with known connectivities under different dynamical conditions. To
that end, we simulate a network of N = 100 Leaky Integrate and Fire neurons
(c.f. Appendix B) (with 80% excitatory and 20% inhibitory neurons) project-
ing synapses with probability of connection of p = 0.1 employing normalised
realistic physiological neuronal parameters (Iexti ∈ [1.4, 1.6] pA, τref = 2.0 ms,
τmi = 20.0 ms, V th

i = 20 mV ). By varying the strength of the synapses (yet
maintaining the ratio between excitatory and inhibitory strengths Jinh = −5Jex
) we can effectively modify the irregularity of firing in the network. For each
network realisation we construct event spaces from the first M = 2000 inter-
spike intervals generated from each neuron separately and consequently observe
the Coefficients of Variation of the cross-spike intervals of the connected excita-
tory neurons, CVWE

, of the connected inhibitory, CVWI
, and of the unconnected

neurons, CVWA
.

Indeed, for weak synaptic strengths, where the CV of the inter-spike intervals
is relatively small (CV∆T ≤ 0.1) [Fig. 2(c.)] , the CV of the cross-spike in-
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tervals (CVW ) arising from unconnected and excitatory neurons are comparable
[Fig. 2(a.)]. However, as the synaptic strength increases and therefore also the
irregularity of firing elevates [Fig. 2(c.)], the variation of the cross-spike intervals
defined with respect to connected units is consistently smaller than the variation
of the cross-spike intervals of the unconnected neurons (blue and red marks in
Fig. 2(a.) for connected against black marks for unconnected units).

3.2. Inference of synaptic connectivity with Minor Component
Analysis

What if we could mitigate the influence of the highly variable cross-spike inter-
vals of the unconnected neurons and try to identify the connectivity considering
only the less variable dimensions of the event spaces? To that end, we may
construct the linear system of equations (Eq. 8) employing the entire ensemble
of monitored events and subsequently perform a Minor Component Analysis on
the resulting matrix Y i. That matrix is essentially composed of the cross-spike
intervals differences of all the recorded events with the reference event, which
geometrically corresponds to a simple translation of the entire cluster of events.
Since the reference event is selected as the event with the median distance to
the entire event ensemble, this translation may correspond to an approximate
centering of the event manifold.
By performing a Singular Value Decomposition on the matrix Y i (Eq. 8), we

may obtain:
Y i = UΣV >, (15)

where U ∈ RNKi×NKi , Σ ∈ RNKi×M and V ∈ RM×M . Essentially the rows of ma-
trix U = [u1u2 . . .uNKi ]> form an orthonormal basis that spans the range space
of Y i, where the vectors ux are ordered with non-increasing variance, captured by
the magnitude of the associated singular values, Σ = diag[σ1, σ2, . . . σr,0(NKi−r)],
where r = rank(Y i). At the same time, the columns qx of the product ΣV > =
[q1q2 . . .qM ] reflect the magnitude of the projection of each of theM events onto
each direction of the orthonormal basis U .
Consequently, we propose the selection of s directions that exhibit the smallest

variance in the event space and solve the system of equations (Eq. 8) by consid-
ering only those selected directions. For that purpose, we may eliminate the first
r − s singular values and obtain:

Σ̃ = diag[0r−s, σ−s, σ−s+1, . . . , σ−1]. (16)

Consequently we obtain the modified matrix by Ỹ i = UΣ̃V >. Eventually, we may
calculate the Moore-Penrose pseudo-inverse of Ỹ i, Ỹ i†, to obtain an approximate
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solution of the system of equations (Eq. 8):

giΓ
i = diỸ i†. (17)

Nevertheless, how many dimensions with minimum variance should we select?
In other words, how could we define the optimal value of s? Systematical stud-
ies revealed that an effective strategy for the selection of s may consider the
differences in magnitudes of consecutive singular values. In fact, we propose to
identify the pair of consecutive singular values, σr−s−1 and σr−s, that exhibits the
larger magnitude difference and subsequently preserve the singular values that
have magnitude equal or less than σr−s. In practice, we select s as:

max
s

(σr−s−1 − σr−s), s ∈ {1, 2, . . . , r − 1}. (18)

Yet does this modified approach work? In order to assess the capabilities of this
altered reconstruction strategy, we simulate a network of N = 100 neurons (80%
excitatory, 20% inhibitory) with probability of connection p = 0.1 and synaptic
strength for the excitatory synapses Jex = 3.5 mV, while for the inhibitory ones
Jinh = −5Jex with the same physiological parameters as mentioned previously.
As a matter of fact, the network exhibits irregular activity, with CV∆T = 0.51.
Subsequently, we reconstruct the network by employing both the approach

presented in Section 2.1 (mentioned as regular approach hereafter) employing
different extents of local samplings and the modified strategy involving the Mi-
nor Component Analysis. Indeed, as already presented in [12], the regular ap-
proach may hardly distinguish between the absent and the excitatory connec-
tions, independently of the number of employed equations in the linear system
[Fig. 3(a.,b.,c.),Fig. 4(a.,b.)]. In contrast, the modified MCA approach effort-
lessly reveals the actual connectivity for both excitatory and inhibitory connec-
tions [Fig. 3(d.),Fig. 4(c.,d.)]. by considering only two singular vectors and the
entire ensemble of recorded events. Indeed, by reconstructing the entire network
and subsequently calculating the error between the actual and the inferred con-
nections we find that the altered method errs only for very few connections by
predicting excitatory synapses between unconnected pairs [Fig. 4(d.)]. In con-
trast, the regular approach successfully identifies only the inhibitory connections
of the network [Fig. 4(b.)]. Thus, the updated reconstruction method effectively
succeeds to identify the synaptic structure of the network.
To investigate the issue further, we simulated networks with the same settings

as mentioned previously for three different recording durations ( T = {80, 160, 240}s)
for different dynamical conditions by varying the synaptic strength of the connec-
tions. For the reconstruction of the connectivities we employed both the regular
and the presently proposed MCA method and observed the accuracy of the pre-
dictions as captured by the AUC score. For the regular approach we employed
in the solution the M = 2500 closest events to the selected reference event.
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a. b.

c. d.re
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A

Figure 3: Minor component reveals accurately the connectivity for ir-
regular dynamics. Reconstruction of incoming connectivity of a single neu-
ron embedded in a network comprising N = 100 LIF neurons (80 %E - 20 %I)
in the irregular activity (J = −3.5 mV ) regime simulated for T = 160 s.
(a.,b.,c.) Predicted connectivity characterisers resulting from local samplings
of M = {2000, 2500, 3000} events and (d.) from employment of all the events
(MT = 7055) considering only the two minor components. Blue and black dots
indicate existing and absent connections, while the red line denotes the discrim-
ination threshold as obtained by the Otsu method [19]. [c.f. Fig. 3.8, p.37 in
[12]]

Indeed, as already observed in [12], as the synaptic connections become stronger
and thereby the irregularity of firing increases, the regular approach starts to
deliver non-accurate predictions resulting in AUC scores below 0.95 [Fig. 5(a.)].
Although the extension of the observation time induces a denser sampling of the
event space and therefore results in more precise predictions, still as the CVISI
exceeds 0.5 (approximately for Jex = 3.5 mV, c.f. Fig. 2(c.)) the regular method
fails to deliver accurate results. In contrast, the modified approach employing
the MCA consistently succeeds to capture the actual synaptic structure of the
network for synaptic strengths Jex < 6 mV.
Surprisingly we notice that the modified method results in inaccurate connec-
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a. b.

c. d.
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Figure 4: Reconstruction considering only the Minor Components suc-
cessfully identifies the network structure, in contrast to the regular
approach. (a.,b.)Resulting reconstruction and reconstruction error as deliv-
ered from the regular reconstruction method employing M = 2500 events in the
linear system, and (c.,d.) resulting reconstruction and reconstruction error ob-
tained from the the MCA modified approach for a network comprising N = 100
LIF neurons (80 % E - 20 % I) with probability of connection p = 0.1 and synaptic
strength Jex = 3.5, Jinh = −5 Jex simulated for T = 160 s.

tivity estimates for networks with very weak synapses (Jex ≤ 1), where the neu-
rons fire almost periodically. As already demonstrated in Fig. 2(a.), in this set-
ting the spread of the events along the dimensions that correspond to connected
and unconnected neurons is almost indistinguishable and therefore a MCA-based
reconstruction may fail per se. In these settings the connectivity may be inferred
with the regular method.
Subsequently we study the accuracy of the predictions of the modified recon-

struction method for networks with different connection densities. We simulate a
network of N = 100 LIF neurons with Jex = 3.5 and Jinh = −5Jex for T = 160s
varying the probability of connection p. Interestingly we find that our approach
delivers accurate results only for sparse networks (with p < 0.5) [Fig. 5(b.)].
However these results were intuitively expected since with increasing probability
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a. b.

Figure 5: Modified reconstruction approach employing MCA effectively
delivers accurate connectivity estimates for different connectivity
strengths and sparse networks. Reconstruction accuracy (AUC score) of in-
coming connectivity of a network comprising N = 100 LIF neurons (80%E-20%I)
against (a.) connection strength simulated for T = {80, 160, 240} s and recon-
structed employing the regular and the MCA modified approaches, and against
(b.) probability of connection employing the MCA modified approach.

of connection also the number of relevant dimensions that we should consider
increases. Therefore a reconstruction strategy that establishes a solution con-
sidering only a small subspace of the initial event space may fail to identify the
exact synaptic structure. Still, the dimensions that were identified as relevant
according to the criterion proposed in Eq. 18 were also for dense networks below
10. Therefore, an updated strategy for the identification of the relevant dimen-
sions may replace the proposed criterion (Eq. 18) and actually result in accurate
predictions.
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4. Conclusion
Here we presented a modification of the model-independent reconstruction method
introduced recently in [12]. That method, although effectively delivered accurate
connectivity estimates for networks with regular activity patterns, failed to pre-
cisely infer the network structure when the constituent neurons fired irregularly.
Here, we suggested a small adjustment that improves the inference results in
settings with irregularly firing neurons. Specifically, we proposed the employ-
ment of Minor Component Analysis to determine the directions in the emerging
event spaces along which the recorded events exhibit the minimum variance. By
measuring the variance that arises in the event spaces along each dimension asso-
ciated with either a connected or an unconnected neuron, we demonstrated that
essentially in the presence of irregular dynamics the dimensions that correspond
to connected neurons exhibit less variance. Based on this finding we employed in
the linear system of equations only the directions of less variance and subsequently
successfully recovered the network structure. We demonstrated the results of the
updated approach for networks simulated under various dynamical conditions
and different connectivity settings, indicating thereby also the limitations of this
modified method.
Essentially, the shortcoming of the method presented in [12] lies partly on the

selection strategy of the events that we employ in the linear system of equations
that eventually yields the connectivity estimates. There we proposed to measure
the proximity of events to the center of the approximation by measuring the
Euclidean distance between the selected and the reference events. However the
Euclidean distance in high dimensional spaces may be ill-defined [17, 18]. In
the regularly firing networks, where the underlying function we approximate is
presumably linear (c.f. [12]), the precise selection of events does not actually
influence the resulting predictions. However, in the presence of irregular dynamics
one might precisely select the events that will be employed in the formulation of
the linear system, since in this setting the underlying approximated function is
probably non-linear, rendering the linear approximation invalid for events that
do not lie in the vicinity of the reference one. For these settings the modified
approach delivers consistently accurate results for sparse network connectivities.
However, this updated framework may not be appropriate for every setting

with irregularly firing neurons. Indeed, we demonstrated that for networks with
dense connectivities the modified method performs slightly better than random
guessing. These results were actually partially expected, since the elimination of
the majority of dimensions in the event space that our method entails, hinders the
identification of the contribution of the majority of the neurons in the network
to the observed inter-spike intervals. Nevertheless, still the results obtained with
this updated approach were comparable with the results delivered by the regular
method.
Overall this complementary reconstruction framework by modifying the exist-
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ing method to deliver more accurate results under biologically realistic condi-
tions (i.e. irregularly firing neurons), may promote the application of our model-
independent reconstruction method in actual experimental settings.
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B. Leaky Integrate and Fire neuron
For the description of the state of the an isolated Leaky Integrate and Fire neuron
(LIF) neuron through the trajectory of the membrane voltage Vi (t), we may
consider the neuronal membrane as a capacitor of capacitance Ci getting charged
by the incoming external ionic currents Ii (t):

Ci
dVi (t)
dt

= Ii (t) . (19)

Furthermore, accounting for the membrane leakage due to ionic diffusion, we may
attach a resistance Ri in parallel to the capacitor, yielding:

Ci
dVi (t)
dt

= Ii (t)−
Vi (t)
Ri

. (20)

Particularly, if we consider a constant external driving current Ii (t) := Iexti and
incorporate the membrane time constant τmi := RiCi, we may obtain the following
equation that governs the dynamics of the sub-threshold membrane voltage Vi of
the isolated LIF neuron:

τmi
dVi (t)
dt

= −Vi (t) +RiI
ext
i . (21)

In equation Eq. ( 21), we have assumed that in the absence of the constant
external input Iexti the neuron would have resided to a zero resting potential,
V rest
i := 0. Additionally, the model considers a spike being emitted artificially

when the membrane voltage surpasses a certain threshold V th
i , termed spiking or

voltage threshold, and the membrane potential returns instantaneously to a lower
value, the reset potential V reset

i .
Without loss of generality, we may assume that at t = 0 the membrane voltage

lies at the reset potential Vi (t = 0) := V reset
i , obtaining eventually a solution of

Eq. ( 21) in the form:

Vi(t) = Iexti Ri

(
1− e−t/τm

i

)
+ V reset

i e−t/τ
m
i . (22)

Embedded in a network, the LIF neuron will receive spikes arriving at its
synapses from the set of its pre-synaptic neighbours, denoted by Pre(i). In order
to account for the network contributions, we may modify Eq. ( 21):

τmi
dVi (t)
dt

= −Vi (t) +RiI
ext
i +Risi (t) , (23)

where
si (t) =

∑
j∈Pre(i)

∑
p

Ji,jδ (t− tj,p − τi,j) (24)
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represents the incoming spikes from the set of the pre-synaptic neurons Pre(i)
emitted at tj,p and received delayed by τi,j. The synaptic efficacies captured by
Ji,j represent the magnitude and the type of the contribution delivered by a single
synaptic event.
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