
Prof. Dr. Manfred Opper
Artificial Intelligence Group (retired)
Fakultät IV - Elektrotechnik und Informatik
TU Berlin

Gutachten zu:

Deterministic particle flows for stochastic nonlinear systems

vorgelegt von Dimitra Despoina Maoutsa

This thesis addresses three important computational problems in the field of stochastic dy-
namical systems which are described by stochastic differential equations (SDE). These are:
efficient ways of simulating the temporal flow of the marginal densities, the optimal control
of such systems and finally, the learning of the driving function of the SDE from an obser-
ved trajectory. These problems are of importance in many areas of research ranging from
statistical physics over computational biology to machine learning.

In contrast to previous approaches to tackle these problems, Dimitra Maoutsa develops and
investigates a novel framework which is based on ensembles of particles having an entirely
deterministic dynamics which is constructed in such a way that marginal densities agree
with those of the stochastic systems. The interaction between the particles is mediated by
the gradient of the log–density of the particles, the so–called score functions, for which
independently, empirical estimators have been developed in the field of machine learning in
recent years.

The first chapter gives a short motivation and overview of the thesis, followed by a concise
summary of the necessary mathematical background from stochastic analysis and machine
learning. Chapter three is devoted to the role and practical estimation of score functions.
This is a very active topic of research in machine learning and Dimitra Maoutsa presents
a detailed overview of current approaches. The specific method developed for the thesis
is based on kernel representations which need only first derivatives of kernels which leads
to a reduced computational complexity. The chapter concludes with an empirical study of
statistical properties (bias, variance) of the estimator. It would be interesting to further
discuss the surprising increase of the variance with sample size (Fig. 3.9). How where the
spatial averages obtained ?

The fourth chapter deals with a novel method for solving Fokker–Planck equations (FPE)
which describe the temporal flow of the marginal density of SDE. After a detailed review
of existing methods, the new deterministic approach is derived from a representation of the
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FPE as a Liouville equation for a system of deterministic particles with an effective drift
which is proportional to the score function. The estimator discussed in chapter three leads
to practical algorithms which can outperform stochastic sampling for a fixed number of
particles. The properties of the method and relations to other particle approaches as well
as detailed numerical investigations are shown. It would be interesting to understand if the
simulations leading to Fig.2 can be viewed as a realisation of the algorithm with linear and
quadratic basis functions. What is the relation of the Benamou–Brenier approach mentioned
on page 122 with the particle approach ?

Chapter five presents a generalisation of the new method to tackle a class of problems in
optimal stochastic control for SDE, which have attracted considerable interest in statistical
physics and machine learning as the path–integral control problem. The goal is to compute an
extra additive force (the control) to the drift of the model, for which an expected cost func-
tional (comprised of a specific control energy, path cost and end cost) is minimised. Dimitra
Maoutsa derives a classical Hamilton–Jacobi–Bellman solution to this problem and a second
derivation based on stochastic calculus which both result in a linear backward–Kolmogorov
equation. She then reviews previous solution methods. The new approach is motivated by
the role that the backward equation plays for smoothing problems in stochastic dynamics.
It is shown how the control can be computed by combining a forward filtering equation with
backward FPE. These equations are solved by the particle approach developed in the pre-
vious chapter. The particle reweighing in the forward filter requires an extra deterministic
step involving an ensemble transform filter. A bit more of cross–referencing between chap-
ters — Eq. (5.84) is obtained from (4.84) and (5.48) should be the same as (5.14)– would
be helpful to follow the derivations. The method is studied and compared to a competing
PICE approach on a variety of model systems, showing an overall good performance. About
the discussion of results, it is not entirely clear to me why a small control energy is always
beneficial. Shouldn’t one discuss the sum of control and path costs together ? Finally, a
more detailed derivation of the population dynamics eq. (5.100) in an appendix would be
beneficial for readers less familiar with mathematical biology.

Chapter six is devoted to an application of the control method developed in chapter five
to the learning of drift functions from discrete time samples of the SDE dynamics. Dimitra
Maoutsa presents a detailed review of drift estimation techniques. She shows how non–
parametric estimators can be computed for the case of data which are sampled with high
frequency. Their performance decreases considerably when the sampling time interval gets
larger. In the latter case, one has to impute the unobserved SDE paths between observations
and one can lean the drift by using a EM algorithm. The E–step of such an algorithm
requires the computation of an expectation over SDE paths conditioned on the end points
defined by observed data. Methods for sampling from these so–called SDE bridges can be
derived from a control perspective which has been developed in the previous chapter five. A
major problem arising from a direct application of these methods comes from the fact that
end points are often highly improbable with respect to the uncontrolled dynamics. Hence,
there are not enough particles from the forward filtering to give reliable estimates for the
backward process. Dimitra Maoutsa develops a novel, geometric approach for dealing with
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this problem. This geometric approach was developed by her alone without contribution
of her supervisor. The main idea is to define a metric in the space of states of the SDE
which is constructed from (samples of) the stationary density. Form this one can compute
geodesics between consecutive data points which can serve as proxies for typical paths. By
adding an extra path cost term (which keeps paths close to the geodesics) to the optimal
control problem, one obtains bridges of much better quality, which lead to an improved
drift estimation in the EM algorithm. The performance and limitations of the new method
is critically studied and discussed for two model systems. I think that this is a creative
novel and promising idea. Its theoretical foundation needs more investigation: What is the
metric in the large data limit ? How are geodesics related to the most likely paths in the
Onsager–Machlup framework ?

Finally, the seventh chapter concludes with a summary of contributions and an outlook on
future work.

This is a very good and successful thesis. It combines a broad variety of mathematical tech-
niques (stochastic processes, optimal stochastic control, nonlinear filtering, path integrals,
Riemannian geometry) with estimation techniques of machine learning to obtain new par-
ticle approaches for SDE and FPE. I expect that these approaches will stimulate further
research in the field.

All in all, an impressive piece of work. Hence, I grade the thesis with:

Very Good (Sehr Gut).

(Professor Dr. Manfred Opper)
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Gutachten zur Dissertation von Dimitra Despoina Maoutsa

Sehr geehrter Professor Schuhmann,

ich schicke Ihnen mein Gutachten zur Dissertation von Dimitra Maoutsa mit dem Titel De-
terministic particle flows for stochastic nonlinear systems.

Background and overview

Sampling the stationary or non-stationary probability law of a diffusion process has been
a standard problem in computational statistics for decades. The applications range from
statistical mechanics to meteorology, systems biology, or material science, to name just
a few. For stationary processes, one of the standard approaches to sample a probability
distribution by means of a single long realisation of the process is Markov Chain Monte
Carlo (MCMC). While MCMC is a powerful tool that allows for bias-free approximation of
stationary (i.e. equilibrium) distributions, it cannot be applied to non-stationary or transient
processes; moreover its convergence rate usually degrades in high-dimensions, unless
clever MCMC proposals are used that require good a priori knowledge of the system. As
an alternative, algorithms based on intracting particle systems that are based on either
deterministic or stochastic flows that transform the target distribution into a simpler (e.g.
Gaussian) distribution that can be easily sampled from have been recently proposed.

Dimitra Maoutsa’s PhD thesis is concerned with deterministic transport algorithms for inter-
acting particle systems (IPS). The key idea is (a) to reformulate the parabolic Fokker-Planck
equation for the finite time marginal density of the process as a first-order transport equa-
tion of Liouville type and (b) to devise suitable approximations of the gradient of the log
density (called “score”) of the process rather than the (log) density as is commonly done.

Dimitra Maoutsa discusses various approximation procedures and estimators for the score
function and applies them in the context of control and inference of diffusion processes. All
theoretical derivations are accompanied and validated by extensive numerical experiments
on both trivial toy examples and less trivial systems of practical relevance.

Some Specifics

The thesis is split into three main parts that are aligned with the keywords simulation, con-
trol, and inference in the thesis subtitle. After the introduction (Section 1) that contains a
high-level overview of the key results of the thesis and a Section 2 that provides the ma-
thematical tools relevant for this thesis (e.g. stochastic differential equations, divergence
between probability measures, etc.), the first part (Sections 3 and 4) is concerned with
score function approximations and IPS-based simulation of Fokker-Planck equations, the
second part (Section 5) deals with the application of the IPS approach to the solution of
so-called “ linearly solvable” stochastic control problems, whereas the third part (Section



6) is devoted to an application to Bayesian inference with sparse observations. A summary
of the key results and a brief prospect of future research are given in Section 7. The re-
levant Section 3–6 that contain the main results of the thesis are based on publications,
each with Dimitra Maousta as first author who has been responsible for drafting, numerical
implementation and tests, and writing.

The key idea outlined in Section 3 is to devise non-parametric estimators for the log gradient
density based on a kernelisation of the score matching loss due to A. Hyvärinen (with an
appropriate RKHS norm regularisation). By doing so, Dimitra Maoutsa can derive a closed-
form expression for the score estimator that (a) does not require expensive computations
of Hessian matrices of the density and (b) can be adapted so as to enforce sparsity of the
kernel functions. The numerical tests show a good performance, similar to Stein’s method
that also does not require the computation of Hessians. An interesting observation in Sec-
tion 3.6 is that the bias in the gradient log density for a certain number M ≪ N of inducing
points scales with N−1/4 where N is the number of particles. While this behaviour is consis-
tently observed over all the numerical examples, I could not find a possible explanation for
this asymptotic behaviour of the bias. Moreover the authors describes that the variance of
the estimator can saturated for N → ∞ (see p. 52), which is another interesting observation
that may be attributed to the interplay between M and N . The detailed study of the asym-
ptotic properties of the estimator would be beyond the scope of the thesis, nevertheless the
observations made here warrant further studies I suppose.

In Section 4, the non-parametric estimator is then embedded into an IPS framework to ap-
proximate both the time-dependent (“transient”) and stationary (“equilibrium”) solution of
the Fokker-Planck equation (FPE). To this end, the FPE is recast as a Liouville-type conti-
nuity equation, which includes a velocity field that depends on the log gradient density and
that can be estimated on the fly using the techniques outlined in Section 3. The solution of
the Liouville equation is then simulated by sufficiently many interacting particles that follow
the estimated deterministic velocity field, using the method of characteristics. (The velocity
field is not really deterministic as it depends on the random samples that go into the gra-
dient log estimator, but there is no extra diffusion that drives the particles.) The algorithmic
idea is then tested with many different (e.g. linear and nonlinear, one- and multidimensio-
nal) examples and compared with a crude Monte-Carlo (CMC) method. In comparison with
the CMC approximation The deterministic approach shows superior approximation of the
modes of the distribution, consistently over the various examples, but less so of the tails of
the distribution; this is not terribly surprising because the dynamics is non-diffusive, so the
deterministic particles cannot access these small probability regions when are not present
in gradient log estimator. (It would be interesting to compare this to the tail properties of
Stein’s variational gradient descent algorithm that, interestingly enough, can be obtained
from the approach developed in this thesis by changing the regularisation parameter as the
author observes; see p. 91, first paragraph). The deterministic IPS needs far less partic-
les than the stochastic CMC approximation, but it would have been interesting to compare
the CMC and the deterministic IPS approach for a fixed computational budget, because
I believe that there is a considerable computational overhead related to the gradient log
estimation.

In Section 5, the IPS simulation algorithm is then applied to the solution of linear-quadratic
stochastic optimal control probelms onfinite time-horizon. For these problems, the depen-
dence of the dynamics on the state can be nonlinear, but the control enters quadratically



into the cost function and affine-linearly in the equation. By design, these problems are
linearly solvable, for the associated dynamic programming (also: HJB) equation can be
transformed into a linear parabolic backward evolution equation by a logarithmic transfor-
mation. The linear equation has a probabilistic Feynman-Kac representation, so theoreti-
cally its solution could be computed by Monte Carlo. In practice, the CMC estimators may
suffer from huge relative errors, and Dimitra Maoutsa has exploited a specific representati-
on of the value function of the control problem in terms of a pair of adjoint linear evolution
equations for a killed diffusion process that goes back to work by H. Kappen. (Here the
killing rate is equal to the running cost of the underlying control problem.) As is shown,
it is possible to formulate the problem of simulating the adjoint pair as a bridge sampling
problem that boils down to solving a pair of forward-backward FPE. For the latter, the re-
sults from the previous section essentially carry over, and the Dimitra Maoutsa reports the
results of extensive numerical experiments, including the controlled synchronisation of a 6-
dimensional stochastic Kuramoto model as a nontrivial test case. For the latter, the author
presents numerical results for the finite time horizon as well as for the infinite-time horizon
case that can be dealt within the receding horizon or model predictive control framework.
The numerical results are reported to be consistent with results obtained from CMC-based
path integral algorithms. Even though the numerical results look convincing and the de-
terministic IPS method is reported to feature lower computational cost than path integral
methods or iterative approaches based on forward-backward stochastic differential equati-
ons, the method is not plug-and-play; the author mentions several non-trivial modifications
of the core algorithm that are necessary to guarantee the approximation fidelity for problems
that involve both terminal and running costs, such as operator splitting, particle shifting or
reweighting that may produce an additional computational overhead (see Section 5.7.1).

Finally, Section 6 is devoted to a Bayesian inference problem with sparse-in-time obser-
vations and unknown drift vector field. The key idea of what is called a “path augmen-
tation scheme” is twofold: (a) assuming that the dynamics concentrates on a possibly
low-dimensional (Riemannian) submanifold of the state space, Dimitra Maoutsa uses lo-
cal covariance information of the observation data to estimate the Riemannian structure
underlying the unobserved data, and then (b) employs the bridge sampling framework from
the previous section to sample the Bayesian posterior under the geometric constraints im-
posed by the Riemannian structure. By the assumption that the unobserved components
concentrate along the data manifold, the bridge sampling technique developed in Secti-
on 5 can be used to handle sparse data by filling the gaps between the filtered sparse
state estimate. A feature of the path augmentation scheme is that the densely sampled
paths can then be used to estimate the drift. By iterating state and drift estimation in an
expectation-maximization like fashion, the initial estimates can then be refined until a pres-
cribed tolerance is reached. The idea of the path augmentation approach is appealing and
surely original, and it is supported by numerical experiments for the van-der-Pol oscillator
and a stochastic Fitzhugh-Nagumo model. Nevertheless it is difficult to judge whether the
assumptions of the data manifold and the path concentration property are really met for a
system under consideration, which makes the scheme somewhat arbitrary (as the author
admits; see p. 236, third paragraph). Moreover the description of the scheme is rather rudi-
mentary, which is, however, hardly surprising since it comprises advanced techniques from
very different mathematical fields, such as Bayesian statistics, control theory, Riemannian
geometry, approximation theory, etc. that are not easily put into a coherent framework. As
the discussion at the end of Section 6 shows, the author is aware of these difficulties and



list several possible issues and open problems, from lack of Markovianity to issues with
non-trivial (e.g. state-dependent) diffusion coefficient, or problems to precisely estimating
the dimension of the data manifold.

Critique

From a high-level perspective, the structure of the thesis is relatively clear, even though the
three parts related to simulation, control, and inference are strongly interwoven. Since the
chapters follow the outline of the author’s publications, there are, however, some redundan-
cies and repetitions here and there that makes it sometimes difficult to understand whether
an argument or an equation from a previous Section is new or just reformulated. Yet, with
few exceptions, Dimitra Maoutsa is very careful in formulating the underlying mathematical
assumptions for an algorithm explicitely whenever this is possible. When this is not possible,
the gaps are filled by carefully conducted numerical experiments. Therefore the theoretical
considerations together with the numerical expriments provide a fairly complete picture of
the pros and cons of the devised algorithms.

I have a few minor technical remarks (typos, definitions of symbols that are too far away
from where the symbols appear first, improper references to equations, etc.), especially
related to Section 2, that the author can take from my annotated copy of the thesis and
that she can take into account when submitting the final version of her thesis. These minor
remarks also comprise the aforementioned “few exceptions” regarding tacit assumptions
that could be stated more clearly (e.g. in the discussion of the linear system in Section 4.8
where Dimitra Maoutsa tacitly assumes that the noise coefficient is a scalar multiple of the
identity).

Conclusions

Dimitra Maoutsa’s thesis is an impressive piece of work that devises efficient algorithms
by cleverly combining tools from vastly different mathematical fields, such as statistics, sto-
chastic analysis, machine learning, Riemannian geometry, and optimisation. Even though
numerical test of challenging high-dimensional problems (say, beyond dimension 100) that
could provide more detailed information about the computational efficiency of the schemes
are lacking so far, the results in this thesis are promising and already pave the way to
interesting applications.

The thesis contains original and novel results, and it is likely to make relevant contributi-
ons to the field. Dimitra Maoutsa has demonstrated that she is not only able to conduct
independent research, but also that she can solve hard computational problems by easily
combining fairly advanced mathematical and algorithmic tools. Overall, my critical remarks
are nitpicking, and I recommend to accept this thesis with the mark: sehr gut

(Prof. Dr. Carsten Hartmann)
Chair of Stochastics and its Applications
BTU Cottbus-Senftenberg



Review of the PhD thesis manuscript “Deterministic particle flows for stochastic nonlinear 
systems” by Dimitra Despoina Maoutsa for the degree of Doctor at the TU Berlin. 
 
Reviewer: Hilbert J. Kappen 
 
The thesis addresses various important problems that occur in inference, learning and control. 
It is correctly observed that in all these problems the estimate of the gradient of the log 
density is of central importance. I have read the thesis and find it very good (“sehr gut”).  
 
Chapter 2 contains a useful summary of fundamental methods that are relevant to the thesis, 
such as Ito scheme, Girsanov Thm, Radon-Nikodym derivative and the Wasserstein 
distances. Each of the chapters 3-6 contains a good overview of existing methods and 
motivates the contribution of that chapter. Each of these chapters contains an original 
contribution that is published in the scientific literature, except for chapter 6 which will be 
published on arxiv.  
 
I find the application of the deterministic kernel-based approach to stochastic path integral 
control problems that is the subject of chapter 5 very original and an important novel 
contribution.  
 
I briefly review each of the chapters, including a number of questions. 
 
In chapter 3, the gradient of the log density is estimated from samples using a kernel. A 
sparse estimate is considered where the samples are replaced by (randomly selected) inducing 
points. The method is demonstrated on several artificial 1,2 and 3 dimensional problems. The 
method is compared with other methods on a challenging artificial two-dimensional 
problem.  
Questions:  
1. It is stated that the Stein method in Fig. 3.12 performs better than the other methods. 
However, this is not confirmed in fig. 3.13, where the Stein method has the largest error. 
Closer inspection of fig. 3.12 reveals that the Stein method performs perfectly wrong! It 
estimates zero gradient at locations where the gradient is large, and vise versa. This 
‘inversion’ seems also the case, but less clear, for the proposed method in fig. 3.12. What is 
going on here? 
2. The errors reported in fig. 3.13(left) are very large. What is the reason for comparing the 
normalized gradients fig. 3.13(right)? 
3. Figs. 3.6-3.8 show the bias in the method for a 1-, 2- and 3-dimensional problem. In 1 and 
3 dimension the bias is independent of the number of inducing points. In 2 dimensions, the 
bias _increases_ with number of inducing points. One would naively expect that more 
inducing points introduces less bias. Why is this not observed?  
 
Chapter 4 discusses simulation of the Fokker-Planck equation. It reviews common methods, 
such as the spectral decomposition, space discretization, and stochastic sampling methods. In 
Eq. 4.31 the FP equation is expressed as a gradient flow in probability space towards the 
stationary distribution. The objective that is minimized is the KL divergence of the 
instantaneous distribution towards the stationary distribution (Stein variational gradient 
descent). Using a kernel approximation, this becomes a deterministic particle dynamics Eq. 
4.34. In 4.4 this idea is directly applied to the FP equation with no direct reference to the 
stationary distribution yielding a deterministic set of N coupled ODEs Eq. 4.47, which can be 
made more efficient by introducing inducing points.  



Questions: 
1. On pg. 76 it is mentioned that naive sampling methods suffer from the curse of 
dimensionality and suggest that this can be improved by considering deterministic particle 
methods. However, it seems to me that deterministic methods suffer essentially the same 
curse of dimensionality. 
2. In section 4.7.2 a comparison is made between the Stein variational gradient descent and 
the new proposal. It is stated that the FP dynamics converges faster to equilibrium than the 
Stein dynamics. However, it seems to me that this depends on the type of FP dynamics and 
does not need to be true in general.  
3. In fig. 4 and 5, it seems that the accuracy does not depend on the number of inducing 
points. Why is this the case? Why is the difference between S and D so large in figs. 4a,b and 
less so in figs. 5a,b? 
4. The choice of the noise D(x)=sin^2(x) makes the bi-stable problem easier because the 
stationary distribution becomes unimodal. Why this easy choice? What would happen if 
D(x)=cos^2(x)? 
5. Is it a fair comparision to use same number of particles for S and D? D requires matrix 
inversion and is more costly. How does the gained efficiency of D versus S in terms of 
number of samples (fig. 4.13) compare to the additional cost of D vs. S? 
 
Chapter 5 considers the stochastic optimal control problems, in particular the class of path 
integral control problems. The chapter formulates the optimal control in terms of the 
difference of two gradients of log probabilities Eq. 5.76. It is shown that both can be 
estimated using the deterministic particle scheme of the previous chapters.  
The approach is tested numerically on several problems and compared to the previous PICE 
method. The results show that the new method is more efficient than PICE resulting is 
essentially the same solution (slightly larger control cost). This new method proposed in this 
chapter provides a truly original and important advance in the field of path integral control. 
Questions: 
1. For PI control problems it is well known that the sampling becomes increasingly harder for 
lower temperature (lower noise or lower control cost). How do the new deterministic 
methods perform in the low temperature regime? 
 
Chapter 6 considers the problem of identifying a dynamical system from sparse observational 
data. In section 6.3, the densely observed case is considered. A previous method using a 
sparse Gaussian process (using inducing points) is reviewed and tested. section 6.5-6.7 
considers the sparse case and proposes a new path augmentation framework that uses the 
kernel method of chapters 3 and 4 is applied to the Riemannian manifold of trajectories, also 
using the control methods of chapter 5. The method is numerically evaluated on several 
problems and shown to work very well.  
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